决策树模型(固定模型)
来源:https://uqer.io/community/share/568dce2d228e5b18e2ba296e
楼主上学时学的是机器学习,现在在BAT做数据挖掘,一直对将机器学习的知识应用到金融领域比较感兴趣。
最近发现了优矿这个平台之后,有点着迷了,通过看大家的策略,也学到些知识。
因为楼主对金融投资认识不多,所以写的策略比较简单粗暴,希望向大家多多学习~
策略: 1、不预测具体股价,只预测次日收盘价相比今日是涨是跌; 2、如果预测为涨,则全部买入或持有;如果预测为跌,则全部卖出。
方法: 基于某只股票的历史数据,采用机器学习的方法,挖掘其中规律,预测该只股票次日收盘价是涨还是跌
import numpy as np
from CAL.PyCAL import *
from sklearn.cross_validation import train_test_split
from sklearn.externals import joblib
import pandas as pd
cal = Calendar('China.SSE')
# 第一步:设置基本参数
start = '2015-01-01'
end = '2015-11-01'
capital_base = 1000000
refresh_rate = 1
benchmark = 'HS300'
##HS300
freq = 'd'
#601872.XSHG HS300
# 第二步:选择主题,设置股票池
universe = ['601872.XSHG', ]
##训练模型
def model_train(begin_date,end_date):
data1=DataAPI.MktEqudGet(secID=u"601872.XSHG",beginDate=begin_date,endDate=end_date,field=['tradeDate','highestPrice','lowestPrice','openPrice','closePrice','turnoverVol','turnoverRate'],pandas="1")
data2=DataAPI.MktStockFactorsDateRangeGet(secID=u"601872.XSHG",beginDate=begin_date,endDate=end_date,field=['tradeDate','DAVOL5','EMA5','EMA10','MA5','MA20','RSI','VOL5','VOL10','MACD'],pandas="1")
df_data=pd.merge(data1,data2,on='tradeDate')
tmp=[]
for i in range(len(df_data.values)):
mark_1=0
for j in range(len(df_data.values[i])):
if str(df_data.values[i][j])=='nan':
mark_1=1
if mark_1==0:
a=list(df_data.values[i])
a.append(df_data.values[i][4]-df_data.values[i][10])
a.append(df_data.values[i][4]-df_data.values[i][11])
tmp.append(a)
data=tmp
print len(data)
x=[]
y=[]
for i in range(len(data)-1):
if data[i][4]<data[i+1][4]:
y.append(1)
else:
y.append(0)
x.append(data[i][1:])
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.0, random_state=42)
##训练模型
from sklearn import tree
clf = tree.DecisionTreeClassifier( max_depth =3 )
clf.fit(x_train,y_train)
y_predict=clf.predict(x_train)
n_1=0
for i in range(len(y_predict)):
if y_train[i]==y_predict[i]:
n_1=n_1+1
n_2=0
for i in range(len(y_predict)):
if y_train[i]==y_predict[i] and y_predict[i]==1:
n_2=n_2+1
joblib.dump(clf, 'clf.model')
return clf,float(n_1)/float( len(y_predict) ),float(n_2)/float( int(sum(y_train)) ) ,float(sum(y_train))/float(len(y_train))
def initialize(account):
##使用2015年2月1日之前800个交易日的数据进行训练
today='20150201'
train_begin_date = cal.advanceDate(today,'-800B',BizDayConvention.Preceding).strftime('%Y%m%d')
train_end_date = cal.advanceDate(today,'-1B',BizDayConvention.Preceding).strftime('%Y%m%d')
model,acc_rate,recall_rate,balance=model_train(train_begin_date,train_end_date)
print acc_rate,recall_rate,balance ##正确率、召回率、正负样本均衡度
def handle_data(account):
# 本策略将使用account的以下属性:
# account.referencePortfolioValue表示根据前收计算的当前持有证券市场价值与现金之和。
# account.universe表示当天,股票池中可以进行交易的证券池,剔除停牌退市等股票。
# account.referencePrice表示股票的参考价,一般使用的是上一日收盘价。
# account.valid_secpos字典,键为证券代码,值为虚拟账户中当前所持有该股票的数量。
c = account.referencePortfolioValue
today = account.current_date.strftime('%Y-%m-%d')
begin_date = cal.advanceDate(today,'-1B',BizDayConvention.Preceding).strftime('%Y%m%d')
end_date = cal.advanceDate(today,'-1B',BizDayConvention.Preceding).strftime('%Y%m%d')
data1=DataAPI.MktEqudGet(secID=u"601872.XSHG",beginDate=begin_date,endDate=end_date,field=['tradeDate','highestPrice','lowestPrice','openPrice','closePrice','turnoverVol','turnoverRate'],pandas="1")
data2=DataAPI.MktStockFactorsDateRangeGet(secID=u"601872.XSHG",beginDate=begin_date,endDate=end_date,field=['tradeDate','DAVOL5','EMA5','EMA10','MA5','MA20','RSI','VOL5','VOL10','MACD'],pandas="1")
df_data=pd.merge(data1,data2,on='tradeDate')
a=list(df_data.values[0])
a.append(df_data.values[0][4]-df_data.values[0][10])
a.append(df_data.values[0][4]-df_data.values[0][11])
x_predict=a[1:]
for i in range(len(x_predict)):
if str(x_predict[i])=='nan':
x_predict[i]=10000000
clf = joblib.load('clf.model')
y_predict=clf.predict(x_predict)
# 计算调仓数量
change = {}
for stock in account.universe:
if y_predict>0 and stock not in account.valid_secpos:
p = account.referencePrice[stock]
order(stock,int(c / p))
if y_predict==0 and stock in account.valid_secpos:
order_to(stock,0)
#print today,x_predict[3],y_predict
713
0.580056179775 0.334384858044 0.445224719101
This is an empty markdown cell