Even More Conservative Bollinger Bands
来源:https://uqer.io/community/share/54859edff9f06c8e77336729
import quartz
import quartz.backtest as qb
import quartz.performance as qp
from quartz.api import *
import pandas as pd
import numpy as np
from datetime import datetime
from matplotlib import pylab
import talib
start = datetime(2011, 1, 1)
end = datetime(2014, 12, 1)
benchmark = 'HS300'
universe = ['601398.XSHG', '600028.XSHG', '601988.XSHG', '600036.XSHG', '600030.XSHG',
'601318.XSHG', '600000.XSHG', '600019.XSHG', '600519.XSHG', '601166.XSHG']
capital_base = 1000000
refresh_rate = 5
window = 200
def initialize(account):
account.amount = 10000
account.universe = universe
add_history('hist', window)
def handle_data(account, data):
for stk in account.universe:
prices = account.hist[stk]['closePrice']
if prices is None:
return
mu = prices.mean()
sd = prices.std()
upper = mu + .5*sd
middle = mu
lower = mu - .5*sd
cur_pos = account.position.stkpos.get(stk, 0)
cur_prc = prices[-1]
if cur_prc > upper and cur_pos >= 0:
order_to(stk, 0)
if cur_prc < lower and cur_pos <= 0:
order(stk, account.amount)
bt
tradeDate | cash | stock_position | portfolio_value | benchmark_return | blotter | |
---|---|---|---|---|---|---|
0 | 2011-01-04 | 1000000 | {} | 1000000 | 0.000000 | [] |
1 | 2011-01-05 | 1000000 | {} | 1000000 | -0.004395 | [] |
2 | 2011-01-06 | 1000000 | {} | 1000000 | -0.005044 | [] |
3 | 2011-01-07 | 1000000 | {} | 1000000 | 0.002209 | [] |
4 | 2011-01-10 | 1000000 | {} | 1000000 | -0.018454 | [] |
5 | 2011-01-11 | 1000000 | {} | 1000000 | 0.005384 | [] |
6 | 2011-01-12 | 1000000 | {} | 1000000 | 0.005573 | [] |
7 | 2011-01-13 | 1000000 | {} | 1000000 | -0.000335 | [] |
8 | 2011-01-14 | 1000000 | {} | 1000000 | -0.015733 | [] |
9 | 2011-01-17 | 1000000 | {} | 1000000 | -0.038007 | [] |
10 | 2011-01-18 | 1000000 | {} | 1000000 | 0.001109 | [] |
11 | 2011-01-19 | 1000000 | {} | 1000000 | 0.022569 | [] |
12 | 2011-01-20 | 1000000 | {} | 1000000 | -0.032888 | [] |
13 | 2011-01-21 | 1000000 | {} | 1000000 | 0.013157 | [] |
14 | 2011-01-24 | 1000000 | {} | 1000000 | -0.009795 | [] |
15 | 2011-01-25 | 1000000 | {} | 1000000 | -0.005273 | [] |
16 | 2011-01-26 | 1000000 | {} | 1000000 | 0.013536 | [] |
17 | 2011-01-27 | 1000000 | {} | 1000000 | 0.016128 | [] |
18 | 2011-01-28 | 1000000 | {} | 1000000 | 0.003393 | [] |
19 | 2011-01-31 | 1000000 | {} | 1000000 | 0.013097 | [] |
20 | 2011-02-01 | 1000000 | {} | 1000000 | 0.000252 | [] |
21 | 2011-02-09 | 1000000 | {} | 1000000 | -0.011807 | [] |
22 | 2011-02-10 | 1000000 | {} | 1000000 | 0.020788 | [] |
23 | 2011-02-11 | 1000000 | {} | 1000000 | 0.005410 | [] |
24 | 2011-02-14 | 1000000 | {} | 1000000 | 0.031461 | [] |
25 | 2011-02-15 | 1000000 | {} | 1000000 | -0.000457 | [] |
26 | 2011-02-16 | 1000000 | {} | 1000000 | 0.009590 | [] |
27 | 2011-02-17 | 1000000 | {} | 1000000 | -0.000807 | [] |
28 | 2011-02-18 | 1000000 | {} | 1000000 | -0.010484 | [] |
29 | 2011-02-21 | 1000000 | {} | 1000000 | 0.014332 | [] |
30 | 2011-02-22 | 1000000 | {} | 1000000 | -0.028954 | [] |
31 | 2011-02-23 | 1000000 | {} | 1000000 | 0.003529 | [] |
32 | 2011-02-24 | 1000000 | {} | 1000000 | 0.005101 | [] |
33 | 2011-02-25 | 1000000 | {} | 1000000 | 0.002094 | [] |
34 | 2011-02-28 | 1000000 | {} | 1000000 | 0.013117 | [] |
35 | 2011-03-01 | 1000000 | {} | 1000000 | 0.004733 | [] |
36 | 2011-03-02 | 1000000 | {} | 1000000 | -0.003562 | [] |
37 | 2011-03-03 | 1000000 | {} | 1000000 | -0.006654 | [] |
38 | 2011-03-04 | 1000000 | {} | 1000000 | 0.015193 | [] |
39 | 2011-03-07 | 1000000 | {} | 1000000 | 0.019520 | [] |
40 | 2011-03-08 | 1000000 | {} | 1000000 | 0.000884 | [] |
41 | 2011-03-09 | 1000000 | {} | 1000000 | 0.000420 | [] |
42 | 2011-03-10 | 1000000 | {} | 1000000 | -0.017551 | [] |
43 | 2011-03-11 | 1000000 | {} | 1000000 | -0.010025 | [] |
44 | 2011-03-14 | 1000000 | {} | 1000000 | 0.004787 | [] |
45 | 2011-03-15 | 1000000 | {} | 1000000 | -0.018069 | [] |
46 | 2011-03-16 | 1000000 | {} | 1000000 | 0.013806 | [] |
47 | 2011-03-17 | 1000000 | {} | 1000000 | -0.015730 | [] |
48 | 2011-03-18 | 1000000 | {} | 1000000 | 0.005813 | [] |
49 | 2011-03-21 | 1000000 | {} | 1000000 | -0.002667 | [] |
50 | 2011-03-22 | 1000000 | {} | 1000000 | 0.004942 | [] |
51 | 2011-03-23 | 1000000 | {} | 1000000 | 0.013021 | [] |
52 | 2011-03-24 | 1000000 | {} | 1000000 | -0.004155 | [] |
53 | 2011-03-25 | 1000000 | {} | 1000000 | 0.013263 | [] |
54 | 2011-03-28 | 1000000 | {} | 1000000 | -0.001188 | [] |
55 | 2011-03-29 | 1000000 | {} | 1000000 | -0.009905 | [] |
56 | 2011-03-30 | 1000000 | {} | 1000000 | -0.000583 | [] |
57 | 2011-03-31 | 1000000 | {} | 1000000 | -0.010071 | [] |
58 | 2011-04-01 | 1000000 | {} | 1000000 | 0.015339 | [] |
59 | 2011-04-06 | 1000000 | {} | 1000000 | 0.011714 | [] |
... | ... | ... | ... | ... | ... |
948 rows × 6 columns
perf = qp.perf_parse(bt)
out_keys = ['annualized_return', 'volatility', 'information',
'sharpe', 'max_drawdown', 'alpha', 'beta']
for k in out_keys:
print '%s: %s' % (k, perf[k])
annualized_return: 0.118291633101
volatility: 0.134550735738
information: 0.776689524517
sharpe: 0.591647698281
max_drawdown: 0.135222029922
alpha: 0.109380091075
beta: 0.429849284472
perf['cumulative_return'].plot()
perf['benchmark_cumulative_return'].plot()
pylab.legend(['current_strategy','HS300'])
<matplotlib.legend.Legend at 0x49c0b10>